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An attribute-based encryption scheme capable of handling multiple authorities was recently proposed by
Chase. The scheme is built upon a single-authority attribute-based encryption scheme presented earlier
by Sahai and Waters. Chase’s construction uses a trusted central authority that is inherently capable of
decrypting arbitrary ciphertexts created within the system. We present a multi-authority attribute-based
encryption scheme in which only the set of recipients defined by the encrypting party can decrypt a
corresponding ciphertext. The central authority is viewed as ‘honest-but-curious’: on the one hand, it
honestly follows the protocol, and on the other hand, it is curious to decrypt arbitrary ciphertexts thus
violating the intent of the encrypting party. The proposed scheme, which like its predecessors relies on the
Bilinear Diffie–Hellman assumption, has a complexity comparable to that of Chase’s scheme. We prove
that our scheme is secure in the selective ID model and can tolerate an honest-but-curious central authority.
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1. Introduction

In both standard public key encryption and identity-based encryption a message is to be transmitted
to a single recipient known at the time of encryption. Similarly, broadcast encryption addresses
scenarios where a sender explicitly specifies a set of receivers (or revoked users) when encrypting
a plaintext. In contrast, in an attribute-based encryption scheme, the sender does not provide an
explicit list of recipients or revoked users when encrypting a plaintext, but instead, the recipient
of a ciphertext is specified through a set of credentials, also referred to as the attributes, which
are sufficient to decrypt a ciphertext. Fuzzy identity-based encryption proposed by Sahai and
Waters [9] can be used to address such a setting, if all attributes are controlled by a single authority.

The starting point of the current paper is a recent proposal of Chase [5] which considers multi-
authority attribute-based encryption, therewith solving an open problem from [9]. Chase’s scheme
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is capable of handling disjoint sets of attributes that are distributed among multiple authorities.
In this setting, an encrypting party specifies a set of attributes AC with the attributes in AC being
controlled by several authorities. Let Ak be the set of attributes controlled by authority k. Then
the ciphertext C associated with the attribute set AC can only be decrypted by those users u with
a set of attributes Au for which the cardinality of the intersection Au ∩ Ak ∩ AC exceeds the
respective threshold dk , for each authority k.

As pointed out in [5], one of the primary challenges in implementing such a multi-authority
attribute-based encryption scheme is the prevention of collusion attacks among users who obtain
secret key components from different authorities. Moreover, it is desirable to have no communi-
cation between the individual authorities. To overcome these difficulties, Chase’s scheme relies
on a trusted central authority. The resulting scheme is capable of tolerating multiple corrupted
authorities, but the honesty of the central authority remains of vital importance since, by the
construction from [5], the trusted authority has the capability of decrypting every ciphertext.

Our contribution. Building on Chase’s proposal, we construct a threshold scheme for multi-
authority attribute-based encryption which offers the same security guarantees provided by
Chase’s construction, but in addition can tolerate an honest-but-curious central authority. Assum-
ing the central authority is honest during the initialization phase, the indistinguishability of
encryptions is guaranteed. As in [5], our security analysis is in the selective ID model and builds
on the decisional bilinear Diffie–Hellman assumption.

Related work. Since Shamir posed the problem of identity-based encryption [10], various pro-
posals have been made, a very partial list being the work in [2,7,8,11,12]. Building on the bilinear
Diffie–Hellman assumption and the selective ID model [1,4], at EUROCRYPT 2005 Waters
presented an identity-based encryption scheme in the standard model [13]. Sahai and Water’s pro-
posal for a fuzzy identity-based encryption [9] provides an attribute-based encryption with a single
authority. Here, fuzzy refers to an identity id ′ being able to decrypt a ciphertext encrypted by an
identity id if and only if id and id ′ are close to each other in the ‘set overlap’distance metric. This
is of interest when dealing with noisy inputs, such as biometric templates. Building on the ideas
from [9], Chase proposed a solution for multi-authority attribute-based encryption, provided that
a trusted central authority is available [5]. Our proposal aims at improving Chase’s construction
by imposing a weaker assumption on the central authority without paying a high cost in terms
of efficiency. Finally, it is worth mentioning that after a first preprint of our work has become
available [3], an approach to multi-authority attribute-based encryption has been published, where
more interaction among attribute authorities is used to avoid a central authority [6].

2. Notation and preliminaries

As already mentioned, our proposal relies on the decisional bilinear Diffie–Hellman assumption.
For the sake of clarity, the next sections review the relevant terminology related to bilinear maps
and multi-authority attribute-based encryption. Section 2.3 discusses the security model where,
like in [5], we make use of the selective ID model.

2.1 Bilinear maps and the bilinear Diffie–Hellman assumption

Let G1 and G2 be groups of prime order p, and let P be a generator of G1. We assume p to be
a superpolynomial in the security parameter � and that all group operations in G1 and G2 can be
computed efficiently, i.e. in probabilistic polynomial time. We use additive notation for G1 and
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270 V. Božović et al.

multiplicative notation for G2. By e : G1 × G1 −→ G2 we denote an admissible bilinear map,
i.e. all of the following hold [2]:

• For all P, Q ∈ G1 and for all α, β ∈ Z we have e(αP, βQ) = e(P, Q)αβ .
• We have e(P, P ) �= 1, i.e. e(P, P ) is a generator of G2.
• There is a probabilistic polynomial time algorithm that for arbitrary P, Q ∈ G1 computes

e(P, Q).

In the above setting, the decisional Bilinear Diffie–Hellman (D-BDH) problem in (G1, G2, e)

is the problem of distinguishing between the challenger’s possible outputs in the following exper-
iment: The challenger chooses α, β, γ, η ← {0, 1, . . . , p − 1} independently and uniformly at
random, flips a fair binary coin δ ← {0, 1}, and then outputs the tuple

(P, αP, βP, γP, e(P, P )δ·αβγ+(1−δ)·η).

In other words, with probability 1
2 the last component of the challenger’s output is e(P, P )αβγ ,

and with probability 1
2 the last component is uniform at a randomly chosen element from G2. We

define the advantage of algorithm A in solving the D-BDH problem as

Advbdh
A (�) := Pr(δ′ = δ) − 1

2
,

where δ′ is the output of A when trying to guess the value of the fair binary coin δ. We say that
an algorithm A has a non-negligible advantage in solving the D-BDH problem, if Advbdh

A is not
negligible1 where the probability is over the randomly chosen α, β, γ, and η and the random bits
consumed by A.

Definition 1 (Decisional bilinear Diffie–Hellman assumption) The decisional bilinear Diffie–
Hellman assumption holds for (G1, G2, e) if there exists no probabilistic polynomial time
algorithm having non-negligible advantage in solving the above D-BDH problem.

2.2 Authorities, attributes and users

Let K be the polynomial size set of authorities and U the polynomial size set of users we consider,
and denote by Ak the polynomial size set of attributes handled by authority k ∈ K. We impose
that the sets Ak are pairwise disjoint, i.e. the universal attribute set

A :=
⊎
k∈K

Ak

is the disjoint union of the Ak . In addition to the authorities k ∈ K, there is one central authority
kCA �∈ K which we will model as honest-but-curious – the central authority kCA honestly follows
the protocol, but will try to decrypt ciphertexts sent by users in the system. During an initialization
phase we allow communication between kCA and k for each authority k ∈ K, but thereafter no
communication between the central authority and the authorities k ∈ K is possible: while the
central authority kCA is involved in setting up the system, we do not want to rely on kCA being
available throughout the complete lifetime of the system.Also, we do not allow any communication
among the authorities in K.

To distinguish different users, we follow [5] and assume that each user u ∈ U has a unique
identifier. Depending on the application, the identifier could refer to a social security number or a
passport number, for instance. We denote the set of those attributes in A that are available to user
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u ∈ U by Au. Similarly, we write AC for the set of attributes that is associated with a ciphertext
C. This set AC is chosen by the encrypting party as part of the input to the encryption algorithm,
the other part of the input being the plaintext. We associate with each authority k ∈ K a threshold
dk ∈ N>0. The goal is that exactly those users u satisfying

|Au ∩ Ak ∩ AC | ≥ dk for every k ∈ K

are able to decrypt the ciphertext C. In other words, for each authority k, user u must have at least
dk of the attributes that have been specified at the time of encryption. To decrypt a ciphertext,
user u ∈ U uses the secret keys obtained during the initialization phase from the authorities
k ∈ K. Figure 1 lists the main components of a multi-authority attribute-based encryption scheme
(cf. [5]).

Remark 1 Unlike Chase [5], we do not make use of a central key generation algorithm, run by
the central authority kCA to generate secret keys for users u. Without loss of generality, in the
security model we therefore will not give the adversary the possibility to query kCA for private
user keys. In the scheme we discuss, private user keys are generated by the attribute authorities
k ∈ K only.

A crucial feature of a multi-authority attribute-based encryption scheme is the prevention of
collusions among users: we want to prevent that any set of users, each of which is not able
to decrypt a ciphertext C, can combine their information to decrypt C. The security definition
discussed next tries to capture this design goal.

Figure 1. Algorithms in a multi-authority attribute-based encryption scheme.
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272 V. Božović et al.

2.3 Security model

Like Chase [5], we use a selective ID model for the security analysis. The adversary H has to
specify the set of attributes that he wants to attack before receiving any public keys of the system.
Figure 2 shows the game an adversary has to win to defeat the security of our scheme. As in [5],
for our security analysis we impose the technical restriction that the adversary does not query the
same attribute authority twice for private keys of the same user.

Figure 2. Attacking multi-authority attribute-based encryption in the selective ID model.

D
ow

nl
oa

de
d 

by
 [

V
la

di
m

ir
] 

at
 0

0:
19

 1
2 

Fe
br

ua
ry

 2
01

3 



International Journal of Computer Mathematics 273

For a multi-authority attribute-based encryption scheme to be secure, we require that there
is no efficient algorithm achieving a non-negligible advantage in the game in Figure 2. More
specifically, we define the advantage of an adversary H in the game in Figure 2 as

Advsid
H (�) := Pr(δ′ = δ) − 1

2

and make the following definition.

Definition 2 (Security in the selective ID model) A scheme for multi-authority attribute-based
encryption is secure in the selective ID model, if for all probabilistic polynomial time adversaries
H, the advantage Advsid

H (�) is negligible.

The security requirement in Definition 2 does not address the question which information is
available to the central authority. Specifically, in Chase’s scheme [5], the central authority has the
capability of reading arbitrary ciphertexts constructed by the users within the system. To express
a requirement that limits the possibilities of an honest-but-curious central authority, we take a
more detailed look at the setup phase, which is combined into a single algorithm in Figure 1.
More precisely, this step can be seen as a simple protocol where the central authority kCA securely
communicates with the attribute authorities.

Remark 2 From a practical perspective, it is desirable to have no communication among attribute
authorities, and only very limited interaction of the central authority with each attribute authority.
In the protocol in Section 3.1, the central authority sends one message to each attribute authority
and derives the public system parameters from the replies.

The game in Figure 3 captures a setting where an honest-but-curious central authority tries
to violate the indistinguishability of ciphertexts. We introduce a ‘curious’ algorithm B which,
similarly as the ‘outside adversary’ H in Figure 2, fixes the attribute sets and their distribu-
tion among the attribute authorities. Further on, B specifies the set of attributes that will be
associated with the challenge ciphertext. At the end of the setup phase, B learns the complete
state of the central authority, and based on this knowledge then tries to violate the indis-
tinguishability of ciphertexts. For an algorithm B, we define the advantage in the game in
Figure 3 as

Advca
B (�) := Pr(δ′ = δ) − 1

2
.

Definition 3 (Tolerating an honest-but-curious central authority) A scheme for multi-authority
attribute-based encryption can tolerate an honest-but-curious central authority, if for all
probabilistic time algorithms B, the advantage Advca

B (�) is negligible.

Remark 3 Unlike for the adversary H in Figure 2, we do not require that an honest-but-curious
central authority specifies the challenge attributes AC in advance: algorithm B in Figure 3 does
not have to provide this set before the challenge phase.

We are now in a position to describe our suggestion for a multi-authority attribute-based
encryption scheme and to discuss its security in the sense of both Definitions 2 and 3.
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274 V. Božović et al.

Figure 3. Dealing with an honest-but-curious central authority.

3. Proposed protocol

We adopt the notation from Section 2 with G1 and G2 being groups of prime order p, P a
generator of G1 and e : G1 × G1 −→ G2 an admissible bilinear map. We assume the unique
identifiers for users u and for the attribute authorities k ∈ K to be public. Similarly, we assume
the sets of attributes Ak and the corresponding threshold dk to be public – in particular, all these
values are known to the central authority kCA, which we invoke (only) in the setup phase. In order
to generate secret keys for users, we assume that each attribute a ∈ A can be identified with a
number ι(a) ∈ {1, . . . , p − 1} – for practical purposes, ι(a) could be based on a hash value, for
instance.

3.1 The proposed protocol

3.1.1 Setup

The setup phase requires one message to be sent from the central authority to each of the attribute
authorities. It is assumed that the adversary has no possibility to interfere with or to access this
communication:
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The central authority kCA chooses, for each pair (k, u) ∈ K × U , uniformly at random a secret
value sk,u ← {0, . . . , p − 1}. In addition, kCA chooses σ ∈ {0, . . . , p − 1} uniformly at random,
and for each u ∈ U computes a ‘dummy secret’ skCA,u := σ − ∑

k∈K sk,u. The sequence

⎡
⎢⎣sk,u · P︸ ︷︷ ︸

=:Sk,u

⎤
⎥⎦

u∈U

is sent to attribute authority k (k ∈ K), and kCA publishes the public system parameters

⎛
⎜⎝[skCA,u · P ]u∈U , e(P, P )σ︸ ︷︷ ︸

=:pk

⎞
⎟⎠ .

Remark 4 The value skCA,u · P is only needed by user u. To decrease the size of the public
parameters, instead of publishing the sequence [skCA,u · P ]u∈U , alternatively a scenario could be
considered where skCA,u · P is transmitted to u (only).

Attribute authority k ∈ K receives the corresponding sequence of Sk,u-values from kCA and
chooses a value rk ← {0, . . . , p − 1} uniformly at random. Moreover, for each of its attributes
a ∈ Ak , a secret value tk,a ← {1, . . . , p − 1} is chosen uniformly at random by k, and the pair

⎛
⎜⎝e(P, P )rk , [tk,a · P︸ ︷︷ ︸

=:Tk,a

]a∈Ak

⎞
⎟⎠

forms k’s public key. The secret key of k contains the aforementioned values rk , [Sk,u]u∈U , and
[tk,a]a∈Ak

. Finally, for each user u ∈ U , attribute authority k chooses uniformly at random a secret
polynomial fk,u ∈ Fp[X] of degree < dk .

Remark 5 The value e(P, P )rk is only used during encryption to compute the product pk ·∏
k∈K e(P, P )rk – which is ciphertext-independent. If one allows the attribute authorities to con-

tribute to the generation of the public system parameters, the e(P, P )rk -component in the attribute
authorities’ public keys can be omitted. To do so, the public system parameter pk = e(P, P )σ

can be replaced with e(P, P )σ+∑
k∈K rk .

3.1.2 Attribute key generation

To extract the secret decryption key associated with an attribute a ∈ Ak ∩ Au for a user u ∈ U ,
attribute authority k proceeds as follows:

• The secret value Xk,u := Sk,u + (rk − fk,u(0)) · P , which depends on k and u, but not the
specific attribute a, is computed and given to u.

• The attribute-specific value Dk,u,a := fk,u(ι(a))

tk,a
· P is computed and given to u.
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276 V. Božović et al.

3.1.3 Encryption

To encrypt a plaintext M ∈ G2 with associated attribute set AC ⊆ A, the encrypting party chooses
s ← {0, . . . , p − 1} uniformly at random and computes the ciphertext((

pk ·
∏
k∈K

e(P, P )rk

)s

· M, s · P, [s · Tk,a]a∈AC

)
.

3.1.4 Decryption

Let C = ((pk · ∏
k∈K e(P, P )rk )s · M, s · P, [s · Tk,a]a∈AC

) be a ciphertext with associated
attribute set AC , and suppose that user u’s attribute set Au satisfies |Au ∩ Ak| ≥ dk for all k ∈ K.
Then u can recover the plaintext M as follows.

(1) For each k ∈ K, he chooses dk attributes a ∈ Au ∩ Ak , and computes

e(s · Tk,a, Dk,u,a) = e(P, P )fk,u(ι(a))·s .

Then, using Lagrange polynomial interpolation, u computes

e(P, P )fk,u(0)·s .

(2) Further on, for each k ∈ K, user u can use the Xk,u-component of his secret key to compute
e(Xk,u, s · P) = e(P, P )(sk,u+rk−fk,u(0))·s .

(3) Multiplying e(s · P, skCA,u · P) with all of the above values yields

e(s · P, skCA,u · P) ·
∏
k∈K

e(P, P )fk,u(0)·s · e(P, P )(sk,u+rk−fk,u(0))·s

= e(P, P )s·skCA ,u · e(P, P )s·
∑

k∈K(sk,u+rk)

= e(P, P )s·(σ+∑
k∈K rk)

=
(

pk ·
∏
k∈K

e(P, P )rk

)s

.

By inverting this element and multiplying the result with the first component of the ciphertext,
the plaintext M can be recovered.

3.2 Adding new authorities

The ‘dummy secrets’skCA,u facilitate the introduction of new authorities to a previously established
protocol. To add a new authority k∗, the central authority kCA replaces the old value σ with a
new uniformly at random chosen σ ′, and replaces each skCA,u with σ ′ − ∑

k∈K∪{k∗} sk,u. Then
the updated ‘dummy public keys’ skCA,u · P have to be communicated to the users, and the new
authority k∗ can compute its secret and public key as before.

4. Security analysis

The theorems proved in this section show that the protocol proposed in Section 3 is secure both
in the sense of Definitions 2 and 3.
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4.1 Security in the selective ID model

The basic security guarantee of the protocol in question is given by Theorem 1. Our proof builds
on the analysis of Chase’s scheme in [5], and it is worth noting that the reduction to a D-BDH
adversary S in the proof is tight: Essentially, the advantage of the adversary H violating security
in the selective ID model is only halved at the cost of simulating the attribute authorities k and
the central authority kCA.

Theorem 1 Suppose there exists a probabilistic polynomial time adversary H against the pro-
tocol in Section 3.1 having a non-negligible advantage in the game in Figure 2. Then there is
a probabilistic polynomial time algorithm S having a non-negligible advantage in solving the
D-BDH-problem.

Proof As explained in Section 2.1, the input of the D-BDH adversary S is a tuple

(P, αP, βP, γP, e(P, P )δ·αβγ+(1−δ)·η) (1)

with δ ← {0, 1} being chosen uniformly random. To find δ, the algorithm S runs a simulation of
H, and subsequently we refer to S as the simulator: it will simulate all attribute authorities and the
central authority to H, and S will answer all queries for user keys made by H. More specifically,
S mimics the individual phases of the game in Figure 2 as follows:

4.1.1 Setup

The simulator uses the attribute authorities, thresholds and attribute sets specified by H. For
corrupted authorities, the simulator follows exactly the original protocol specification, so that
the history of such an authority (which is revealed to H) follows the same distribution as in the
game in Figure 2. Honest attribute authorities are also simulated by S, but instead of computing
the public key of an uncorrupted authority k as (e(P, P )rk , [tk,a · P ]a∈Ak

), the simulator uses the
public key (e(P, P )rk , [tk,a · Q]a∈Ak

) where

Q :=
{

P if a ∈ AC,

βP if a �∈ AC,

with βP being part of the D-BDH-challenge. In other words, for attributes a ∈ Ak \ AC handled
by honest authorities, the random value tk,a is multiplied with the point βP instead of P . Since
G1 is of prime order, with overwhelming probability βP generates G1 and for H the distribution
of the public keys does not change compared to the game in Figure 2. Reflecting the above
modification of public keys, the computation of the polynomials fk,u by honest authorities will
also be modified, and the simulator S will define the polynomials fk,u implicitly when answering
secret key queries as detailed below.

When simulating the central authority kCA, the simulator follows the steps of the original
protocol, with the following exceptions:

• The value pk in the public system parameters is computed as

pk := e(αP, βP ), (2)

where αP and βP are part of the D-BDH challenge. For the adversary H, the usage of this
modified pk-value instead of e(P, P )σ makes no difference. Because of G2 being of prime
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order, with overwhelming probability pk = e(P, P )αβ is a uniformly distributed element in G2.
Similarly, the original value e(P, P )σ is for H indistinguishable from a uniformly at random
chosen group element. The only information on σ that is potentially available to H, are
– Sk,u-values of corrupted authorities,
– [skCA,u · P ]u∈U ,
– Xk,u-values obtained from secret user key queries.
By assumption, for each u ∈ U , at least one authority k̂(u) is uncorrupted, and hence the first two
of the above listed items alone do not reveal any information on σ . Even with the knowledge of
the Sk,u-values of all corrupted authorities and [skCA,u · P ]u∈U , each value of σ remains equally
likely, as for each u ∈ U the equation

σ =
∑

k∈K∪{kCA}
sk,u

contains at least one unknown random value sk̂(u),u. The only potentially available information
on sk̂(u),u is the value Xk̂(u),u obtained from a secret user key query. However, due to the sub-

traction of the random value f̃k,u(0) · P , each Xk,u is an independent random value, containing
no information on sk,u or σ .

• The simulator chooses the ‘dummy secrets’ skCA,u (u ∈ U) and the sk,u-values of corrupted
authorities uniformly at random. For honest authorities, the sk,u-values will be determined later
as needed.

4.1.2 Secret key queries

We can w.l.o.g. assume that H does not query secret user keys from corrupted attribute authorities,
as H can compute such user keys itself. For uncorrupted attribute authorities, the simulator S must
be able to answer secret key queries from H, and we distinguish two cases:2

(1) |Au ∩ Ak ∩ AC | < dk and there has not been a previous secret key query for user u to an
authority k′ �= k with |Au ∩ Ak′ ∩ AC | < dk′ : W.l.o.g., we may assume |Ak ∩ AC | = dk − 1
(otherwise we can modify H to ask for further secret user keys which will be ignored). The
simulator implicitly defines fk,u by specifying the values of fk,u at dk points. Namely, the
simulator chooses uniformly at random ρk,u,a ∈ Fp for all a ∈ Ak ∩ AC , a random value
ρ̂k,u ∈ Fp and imposes

fk,u(ι(a)) = β · ρk,u,a for all a ∈ Ak ∩ AC and

fk,u(0) = β · (α + ρ̂k,u)

with αP and βP being part of the D-BDH challenge. With overwhelming probability β �= 0
and fk,u follows the same distribution as in the original protocol. Now S can use the values
αP and βP from the D-BDH challenge to extract the requested secret key (Xk,u, Dk,u,a) for
user u ∈ U and attribute a ∈ Ak ∩ Au:
• For a ∈ AC , we have Dk,u,a = (ρk,u,a/tk,a) · βP.

• Because of

fk,u(0)

tk,a · β
· P = 1

tk,a

· (αP + ρ̂k,uP )
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the simulator S can compute the dk points

fk,u(0)

tk,a · β
· P,

⎡
⎢⎢⎢⎣fk,u(ι(a))

tk,a · β︸ ︷︷ ︸
ρk,u,a/tk,a

·P

⎤
⎥⎥⎥⎦

a∈Ak∩AC

and then use Lagrange interpolation to derive

Dk,u,a = fk,u(ι(a))

tk,a · β
· P

for a �∈ AC .
• Finally, the simulator computes

Xk,u := rk · P − ρ̂k,u · βP −
⎛
⎝ ∑

κ∈(K∪{kCA})\{k}
sκ,u

⎞
⎠ · P,

choosing, for the user u, all Sκ,u (κ ∈ K \ {k}), that have not been fixed already, as Sκ,u :=
sκ,u · P with a uniformly at random chosen sκ,u. With the modified value of pk in (2), this
choice of Xk,u implicitly fixes sk,u := αβ − ∑

κ∈(K∪{kCA})\{k} sκ,u.
(2) |Au ∩ Ak ∩ AC | ≥ dk or there has been a previous secret key query for user u to an authority

k′ �= k with |Au ∩ Ak′ ∩ AC | < dk′ : In this case, the simulator chooses a random polynomial
f̃k,u ∈ Fp[X] of degree < dk and implicitly defines fk,u := β · f̃k,u (with βP being part of the
D-BDH challenge). Note that with overwhelming probability β �= 0 and fk,u follows the same
distribution as in the original protocol. Using the value βP from the D-BDH challenge, S can
compute the respective secret key (Xk,u, Dk,u,a) for user u ∈ U and attribute a ∈ Ak ∩ Au as
follows:

Xk,u := Sk,u + rk · P − f̃k,u(0) · βP and

Dk,u,a :=

⎧⎪⎪⎨
⎪⎪⎩

f̃k,u(ι(a))

tk,a

· βP if a ∈ AC,

f̃k,u(ι(a))

tk,a

· P if a �∈ AC.

At this point, the value Sk,u, if not fixed already through a previous secret key query (see
above), is chosen as Sk,u := sk,u · P with a uniformly at random chosen sk,u.

4.1.3 Challenge

Let M0, M1 ∈ G2 be the challenge messages selected by H, and let δ be the value to be found by
the D-BDH adversary S (see (1)). Using a fair binary coin μ ← {0, 1} and the last two components
of the D-BDH challenge, the simulator hands the challenge ciphertext

(e(P, P )δ·αβγ+(1−δ)·η · e(γP, P )
∑

k∈K rk · Mμ, γP, [tk,a · γP ]a∈AC
) (3)

for Mμ to H. We consider both possible cases δ = 0 and δ = 1:
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δ = 0: Because of e(P, P )δ·αβγ+(1−δ)·η = e(P, P )η with a uniformly at random chosen η ←
{0, . . . , p − 1}, the challenge ciphertext contains no information on Mμ.

δ = 1: Because of pk = e(αP, βP ), in this case we can rewrite the challenge ciphertext (3) as

((
pk ·

∏
k∈K

e(P, P )rk

)γ

· Mμ, γP, [γ · tk,aP ]a∈AC

)
,

which is a valid encryption of Mμ.

4.1.4 Further secret key queries

Here the simulator proceeds exactly as with secret key queries prior to the challenge phase,
maintaining consistency with already answered secret key queries.

4.1.5 Guess

Denote by μ′ the output of H. The output of the simulator S is given by

δ′ :=
{

1 if μ = μ′

0 if μ �= μ′ .

In other words,S considers the last component of the D-BDH challenge to be e(P, P )αβγ whenever
H correctly identifies Mμ. As in case of δ = 0 the challenge ciphertext contains no information
on μ, the adversary H’s probability to find the correct μ-value is 1

2 . Consequently, the probability
that S returns a correct guess for δ in this case is 1

2 , too:

Pr(δ′ = δ | δ = 0) = 1

2
. (4)

If δ = 1, the adversary H faces a valid encryption of Mμ, and we obtain

Pr(δ′ = δ | δ = 1) = Pr(μ′ = μ | δ = 1) = 1

2
+ Advsid

H (�). (5)

Combining (4) and (5), we can compute S’s advantage in solving the D-BDH challenge:

Advbdh
S (�) = Pr(δ′ = δ) − 1

2

= 1

2
· (Pr(δ′ = δ | δ = 0) + Pr(δ′ = δ | δ = 1)) − 1

2

= 1

2
·
(

1

2
+ 1

2
+ Advsid

H (�)

)
− 1

2

= 1

2
· Advsid

H (�).

�
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4.2 Security against an honest-but-curious central authority

In order to show that the proposed scheme can tolerate an honest-but-curious central author-
ity in the sense of Definition 3, we can use a similar argument as in the above proof of
Theorem 1. It turns out that again there is a tight security reduction: Essentially, for the
price of simulating the central authority and the attribute authorities, from an adversary B
described in the game from Figure 3, we obtain a D-BDH adversary whose advantage is half the
advantage of B.

Theorem 2 Let B be a probabilistic polynomial time adversary against the protocol in
Section 3.1 having a non-negligible advantage in the game in Figure 3. Then there is a probabilistic
polynomial time algorithm S having a non-negligible advantage in solving the D-BDH-problem.

Proof As in the proof of Theorem 1, the input of the D-BDH adversary S, which we have
to derive, is a tuple of the form (1). Again we refer to S as the simulator, and to find δ, a
simulation of B is run by S. The individual phases of the game in Figure 3 are mimicked as
follows:

Setup. The simulator uses the attribute authorities, users, thresholds and attribute sets speci-
fied by B. For all corrupted authorities the simulator follows the original protocol specification.
Moreover, as the central authority kCA is honest-but-curious, the simulation of kCA follows the
original protocol specification also. In particular, σ and all the sk,u-values (k ∈ K ∪ {kCA}) are
chosen honestly. Let Khon ⊆ K be the set of those attribute authorities that B specified as not
being corrupted.

The simulator chooses one authority k̂ ∈ Khon uniformly at random. For k ∈ Khon \ {k̂} the
simulator generates k’s public key as specified in the original protocol. For k̂, the computation of
the public value e(P, P )rk̂ is modified. Namely, the latter value is computed as

e(αP, βP ) · e(P, P )−
∑

k∈K\{k̂} rk = e(P, P )αβ−∑
k∈K\{k̂} rk

with αP and βP being part of the D-BDH challenge. This implicitly fixes

rk̂ := αβ −
∑

k∈K\{k̂}
rk. (6)

So for B the values learned at the end of the setup phase with overwhelming probability follow
the same distribution as in the original game in Figure 3.

Challenge. Let M0, M1 ∈ G2 be the challenge messages selected by B, and let δ be the value
to be found by the D-BDH adversary S. Using a fair binary coin μ ← {0, 1} and the last two
components of the D-BDH challenge, the simulator hands the challenge ciphertext

(e(P, P )δ·αβγ+(1−δ)·η · e(γP, P )σ · Mμ, γP, [tk,a · γP ]a∈AC
) (7)

for Mμ to H. We consider both possible cases δ = 0 and δ = 1:

δ = 0: Because of e(P, P )δ·αβγ+(1−δ)·η = e(P, P )η with a uniformly at random chosen η ←
{0, . . . , p − 1}, the challenge ciphertext contains no information on Mμ.
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δ = 1: We have e(P, P )δ·αβγ+(1−δ)·η = e(P, P )αβγ , and Equation (6) yields e(P, P )αβγ =
e(P, P )γ ·∑k∈K rk . Hence the challenge ciphertext (7) becomes((

pk ·
∏
k∈K

e(P, P )rk

)γ

· Mμ, γP, [γ · tk,aP ]a∈AC

)
,

which is a valid encryption of Mμ.

Guess. Denote by μ′ the output of B. The output of the simulator S is given by

δ′ :=
{

1 if μ = μ′,
0 if μ �= μ′.

In other words, S considers the last component of the D-BDH challenge to be e(P, P )αβγ when-
ever B correctly identifies Mμ. With the same line of arguments as in the proof of Theorem 1, the
advantage of S in solving the D-BDH challenge computes to

Advbdh
S (�) = 1

2
· Advca

B (�).

�

5. Conclusion

Building on the proposal for multi-authority attribute-based encryption from [5], we constructed
a scheme where the central authority is no longer capable of decrypting arbitrary ciphertexts
created within the system. In addition to showing security in the selective ID model, we showed
that the proposed system can tolerate an honest-but-curious central authority. Since both Chase’s
scheme and the proposed scheme rely on the same hardness assumption, and have a comparable
complexity, the new scheme seems a viable alternative to Chase’s construction. However, since
only the proposed method is capable of handling a curious yet honest central authority, the
proposed scheme is recommended in applications where security against such a central authority
is required.

Notes

1. We refer to a function f : N>0 −→ R as negligible, if |f | = |f (�)| ∈ 1/�o(1).
2. Here we exploit that H never queries the same authority k twice with the same user u, and that for k �= k′ we have

Ak ∩ Ak′ = ∅ (cf. [5, Remark 1]). These assumptions ensure that the validity of |Au ∩ Ak ∩ AC | < dk does not
depend on the future secret key queries of H.
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[3] V. Božović, D. Socek, R. Steinwandt, and V. Villányi, Multi-authority attribute based encryption with
honest-but-curious central authority, Cryptology ePrint Archive: Report 2009/083, February 2009.

D
ow

nl
oa

de
d 

by
 [

V
la

di
m

ir
] 

at
 0

0:
19

 1
2 

Fe
br

ua
ry

 2
01

3 



International Journal of Computer Mathematics 283

[4] R. Canetti, S. Halevi, and J. Katz, A forward-secure public-key encryption scheme. in Advances in Cryptology
– EUROCRYPT 2003, E. Biham, ed., Lecture Notes in Computer Science, Vol. 2656, Springer, Berlin, 2003,
pp. 255–271.

[5] M. Chase, Multi-authority attribute based encryption, in Theory of Cryptography – TCC 2007, S.P. Vadhan, ed.,
Lecture Notes in Computer Science, Vol. 4392, Springer, Berlin, 2007, pp. 515–534.

[6] M. Chase and S. Chow, Improving privacy and security in multi-authority attribute-based encryption, Proceedings of
the 16thACM Conference on Computer and Communications Security,ACM, Silver Spring, MD, 2009, pp. 121–130.

[7] C. Cocks, An identity based encryption scheme based on quadratic residues, in Cryptography and Coding, 8th IMA
International Conference, B. Honary, ed., Lecture Notes in Computer Science, Vol. 2260, Springer, Berlin, 2001,
pp. 360–363.

[8] Y. Desmedt and J.-J. Quisquater, Public-key systems based on the difficulty of tampering (is there a difference between
DES and RSA?), in Advances in Cryptology – CRYPTO ’86, A.M. Odlyzko, ed., Lecture Notes in Computer Science,
Vol. 263, Springer, Belin, 1987, pp. 111–117.

[9] A. Sahai and B.Waters, Fuzzy identity-based encryption, in Advances in Cryptology – EUROCRYPT 2005, R. Cramer,
ed., Lecture Notes in Computer Science, Vol. 3494, Springer, Berlin, 2005, pp. 457–473.

[10] A. Shamir, Identity-based cryptosystems and signature schemes, in Advances in Cryptology – CRYPTO ’84, G.R.
Blakley and D. Chaum, eds., Lecture Notes in Computer Science, Vol. 196, Springer, Berlin, 1985, pp. 47–53.

[11] H. Tanaka, A realization scheme for the identity-based cryptosystem, in Advances in Cryptology – CRYPTO ’87,
C. Pomerance, ed., Lecture Notes in Computer Science, Vol. 293, Springer, Berlin, 1988, pp. 340–349.

[12] S. Tsujii and T. Itoh, An ID-based cryptosystem based on the discrete logarithm problem, IEEE J. Selected Areas
Commun. 7(4) (1989), pp. 467–473.

[13] B. Waters, Efficient identity-based encryption without random oracles, in Advances in Cryptology – EUROCRYPT
2005, R. Cramer, ed., Lecture Notes in Computer Science, Vol. 3494, Springer, Berlin, 2005, pp. 114–127.

D
ow

nl
oa

de
d 

by
 [

V
la

di
m

ir
] 

at
 0

0:
19

 1
2 

Fe
br

ua
ry

 2
01

3 


