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Abstract. We say that a collection of subsets α = [B1, . . . ,Bk] of a group G is a factorization if
G = B1 · · ·Bk and each element of G is expressed in a unique way in this product. We examine a
special case, factorizations of a group Zp×Zq, where p and q are different prime numbers, using the
new approach based on circulant matrices. An interesting number theoretic implication of Rédei’s
theorem for the group Zp×Zq is given.

1. INTRODUCTION

The factorization of abelian groups deals with decomposing an abelian group into a
direct sum of its subsets. The nature of these problems are partly algebraic and partly
combinatorial. However, the origin of the theory of abelian group factorizations is related
to one famous geometric problem. Namely, about 1900, H. Minkowski conjectured:

Every lattice of a tiling of Rn by unit cubes contains two cubes that meet in an n− 1
dimensional face.

In 1938, in his PhD thesis, G. Hajós reformulated Minkowski’s conjecture in terms of
finite abelian groups. That was the beginning of the theory of factorization of abelian
groups in the sense it exists now. The fact that every abelian group is isomorphic to a
factor group of an integral lattice with respect to an integral sub-lattice, connects the
vast field of tilings and abelian groups. In general, factorization questions are relevant to
the theory of numbers, tilings, variable length codes, graph theory, packings, covering
problems, just to mention a few. For a comprehensive introduction to factorizations of
abelian groups we refer the reader to book by Szabó [6].

Definition 1.1. We say that a list of k ≥ 2 subsets α = [B1,B2, . . . ,Bk] of a group G is
a factorization of C ⊆ G if C = B1B2 . . .Bk and every c ∈C has a unique representation
as a product c = b1b2 . . .bk, bi ∈ Bi, 1≤ i≤ k. We call the subsets Bi, the blocks of the
factorization α and each block a factor. The factorization is called normalized if each
block Bi contains the identity element (as does C itself). When C is finite we say that the
type of α is (r1,r2, . . . ,rk), where |Bi|= ri for 1≤ i≤ k.

A factorization α = [B1,B2, . . . ,Bk] of a group G is said to be proper if |Bi| 6= 1 and
Bi 6= G, for every i, 1≤ i≤ k.

Theorem 1.1. Let A,B,C be finite subsets of a group G with AB ⊆C. Then any two of
the following implies the third. Furthermore, the three conditions are equivalent to [A,B]
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being a factorization of C.

(a) AB⊇C;
(b) (A−1A)∩ (BB−1) = {e};
(c) |A||B|= |C|;

Proof. Let P be the set of ordered pairs A×B and consider the product map f : P→C
given by f : (a,b) 7→ ab. Then [A,B] is a factorization of C exactly when the map f is a
bijection from P to C. It remains only to note that the three conditions are

(a) f maps P onto C;
(b) f is one-to-one;
(c) |P|= |C|;

For (b) observe that a1b1 = a2b2 exactly if a−1
2 a1 = b2b−1

1 .

The following, well known lemma gives an algorithmic procedure for constructing a
factorization of given group G.

Lemma 1.1. Let {e} = G0 ≤ G1 ≤ ·· · ≤ Gs = G be a chain of subgroups and let Bi
be a complete set of right coset representatives of Gi−1 in Gi, for 1 ≤ i ≤ s. Then,
α = [B1, . . . ,Bs] is a factorization of G.

Proof. Let g ∈ G be an arbitrary element. There exists a unique bs ∈ Bs such that
g ∈ Gs−1bs. Then gb−1

s ∈ Gs−1. Similarly, there exists a unique bs−1 ∈ Bs−1 such that
gb−1

s ∈ Gs−2bs−1 and consequently gb−1
s b−1

s−1 ∈ Gs−2. Continuing this way, we obtain
a sequence b1,b2, . . . ,bs, unique for a given g ∈ G such that gb−1

s b−1
s−1 · · ·b

−1
1 ∈ G0.

Therefore, g = b1 · · ·bs and bi ∈ Bi for 1≤ i≤ s. Thus, α is a factorization of G.

This specific type of group factorization α = [B1, . . . ,Bs] of a group G, derived from
the chain of groups

{e}= G0 ≤ G1 ≤ ·· · ≤ Gs = G

where Bi is a set of complete representatives of Gi−1 in Gi is called a transversal
factorization. Note that whenever a group G has a proper subgroup, there exists a proper
factorization.

Example 1.1. In particular, let G be a permutation group acting on the set Ω =
{1,2, . . . ,n}. Consider the sequence of subgroups Gi, such that Gi fixes pointwise the
letters from the set {1,2, . . . , i}. Then

G≥ G1 ≥ G2 ≥ ·· · ≥ Gn ≥ {e}.

Therefore, every permutation group has a transversal factorization.

We mention one of the milestones in the theory of factorizations of abelian groups,
Rédei’s theorem [6].

Theorem 1.2. [Rédei] Let α = [B1,B2, . . . ,Bk] be a normalized factorization of the finite
abelian group G such that |Bi|= pi is a prime for each i, 1≤ i≤ k. Then at least one of
the blocks B1,B2, . . . ,Bk is a subgroup of G.
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2. FREE MAPPINGS AND FACTORIZATIONS OF A×B

In this section, A and B will denote finite groups. By introducing a certain class of so-
called free mappings [3] between A and B and by giving an effective way for their
construction, we obtain factorizations of A× B. Although this could be applied to
nonabelian groups A and B, this approach has greater significance for abelian groups.

For the rest of the paper, the term factorization will be reserved for proper factoriza-
tion.

Definition 2.1. Let f : A→ B and g : B→ A be mappings between groups A and B. Two
pairs (a1,b1), (a2,b2), where a1,a2 ∈ A, b1,b2 ∈ B, are said to be a clip of pair ( f , g) if
it holds

f (a1)
−1 f (a2) = b2b−1

1

g(b2)g(b1)
−1 = a−1

1 a2.

We say that a clip (a1,b1), (a2,b2) is strong if a1 6= a2 or b1 6= b2. In fact, it is clear that
if (a1,b1), (a2,b2) is a strong clip, then a1 6= a2 and b1 6= b2. A pair of mappings ( f ,g)
is chained if there exists a strong clip of ( f , g), otherwise we say that it is free.

The following theorem provides a way for constructing a factorization of A×B for given
pair of free mappings ( f , g).

Theorem 2.1. Let f : A→ B and g : B→ A be mappings where A, B are finite groups.
Let S = {(a, f (a))| a∈ A} and T = {(g(b),b)| b∈ B}. Then, α = [S,T ] is a factorization
of A×B if and only if ( f , g) is a pair of free mappings.

Proof. Suppose that α is a factorization of A×B. Let a1,a2 ∈ A and b1,b2 ∈ B be such
that

f (a1)
−1 f (a2) = b2b−1

1

g(b2)g(b1)
−1 = a−1

1 a2.

Equivalently, we have that

(a1, f (a1))(g(b2),b2) = (a2, f (a2))(g(b1),b1).

Hence, (a1, f (a1)) = (a2, f (a2)) and (g(b2),b2) = (g(b1),b1). We conclude that a1 = a2
and b1 = b2, so ( f ,g) is free.

Conversely, suppose that a pair ( f , g) is free. It is easy to see that (S−1S)∩ (T T−1) =
{(e,e)}. Since A and B are finite groups, it follows that |ST |= |S||T |= |A||B|= |A×B|.
Therefore, ST = A×B and according to Theorem 1.1, α is a factorization of A×B.

Let A and B be groups and H be a subgroup of A. We say that f : A→ B is constant
on the left cosets of H if | f (aH)|= 1 for every a ∈ A. In the following lemma, we give
a technique for constructing free mappings.

Lemma 2.1. Let A and B be groups and H be a subgroup of A. Let f : A→ B be constant
on the left cosets of H and g : B→ A such that Im(g)⊆ H. Then the pair ( f , g) is free.
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Proof. Suppose that there exists a strong clip (a1,b1), (a2,b2) of ( f ,g). Then, a−1
1 a2 =

g(b2)g(b1)
−1 ∈ H. This means that a1,a2 are in the same left coset of H. Hence,

f (a1)
−1 f (a2) = e and b2b−1

1 = e, implying b1 = b2. Consequently, we have a1 = a2
which contradicts the assumption that (a1,b1), (a2,b2) is a strong clip of ( f , g).

Clearly, the previous result holds if we take right instead of left cosets. Note that if
H = {e} then Im(g) = {e}. Hence, f could be any mapping from A to B. In order to
construct a proper factorization using the previous lemma, either A or B must have a
nontrivial subgroup. Previous construction could be generalized [2], so that it’s possible
to factorize much broader class of groups than direct products.

The following example is a simple illustration of how to use free mappings to obtain
a factorization of A×B.

Example 2.1. Consider the group

G = 〈a,b,c | a2 = b3 = c3 = e, ba = b, ca = c−1, bc = cb〉.

This is a nonabelian group of order 18 and has a permutation representation on 6 points.
Denote by Sym(n) symmetric group on n elements. We can identify a = (4 5), b = (1 2 3)
and c = (4 5 6). Let A, B be the pointwise stabilizers [1] of the letters {1,2,3}, {4,5,6}
respectively. It is easy to see that A ∼= Sym(3) while B ∼= Z3. Since A and B are both
normal in G and A∩B= {e} it follows that G∼= Sym(3)×Z3. Therefore, we can identify
elements of G as ordered pairs.

First, we apply the technique given in Lemma 2.1 in order to find a pair of free
mappings. We choose a subgroup H of Sym(3), say H = {id,(1 2 3),(1 3 2)}. Then,
considering the cosets H and H(1 2), we can construct a pair of free mappings f ,g in
the following way:

f : Sym(3)→ Z3 , f (x) =

{
0, if x ∈ H;
2, if x ∈ H(1 2).

g : Z3→ Sym(3) , g(0) = id , g(1) = (1 3 2), g(2) = (1 3 2).
The pair of free mappings f ,g provides a factorization Sym(3)×Z3 = B1 ·B2, where

B1 = {(id,0),((1 2 3),0),((1 3 2),0),((1 2),2),((1 3),2),((2 3),2)},

B2 = {(id,0),((1 3 2),1)),((1 3 2),2)}. Note that this is a nontrivial factorization where
the blocks B1,B2 are neither groups nor cosets of groups.

3. FACTORIZATION OF ZPQ

The particular relevance of free mappings appears in the factorizations of Zpq. Further
on, p and q will be different prime numbers. It will be shown that every factorization of
Zpq induces a pair of free mappings between Zp and Zq. We will present an interesting
application of circulant matrices [4] in the factorization of abelian groups. We will show
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that under certain conditions each pair of mappings f : Zp→ Zq and g : Zq→ Zp must
be chained.

Definition 3.1. A set of integers that includes one and only one member of each number
class modulo n is called a complete residue system modulo n.

Example 3.1. Set {−8,−1,0,1,7} is a complete residue system modulo 5.

Theorem 3.1. Let p be a prime number and cp,cp−1, . . . ,c1 integers. Let

V =


cp cp−1 . . . c1
c1 cp . . . c2
...

...
...

...
cp−1 cp−2 . . . cp


be a circulant matrix, denoted by V = circ(cp,cp−1, . . . ,c1). Then det(V ) = 0 if and only
if either ∑

p
i=1 ci = 0 or all the ci are equal.

Proof. If all ci are equal then clearly det(V ) = 0. If ∑
p
i=1 ci = 0, then by adding all rows

of V together, the zero row is obtained and therefore det(V ) = 0.

Conversely, suppose that det(V ) = 0. We know that at least one of the eigenvalues of
a circulant matrix is equal to zero. The eigenvalues of the circulant matrix V are

λl = P(e
2πi
p l), l = 0,1, . . . , p−1

where

P(x) =
p−1

∑
i=0

cixi.

So, there exists l such that e
2πi
p l is a root of the polynomial P(x). Consider two cases. If

l = 0 then
p−1

∑
i=0

ci = 0.

If l 6= 0 then e
2πi
p l is a primitive p-th root of unity. In this case, the minimal polynomial

of e
2πi
p l over the integers is the cyclotomic polynomial

Q(x) =
p−1

∑
i=0

xi.

Therefore P(x) is a constant multiple of Q(x). Consequently, all ci’s are equal.

Definition 3.2. Let U and W be multisets that belong to a common additive group G.
We define U +W to be the multiset that contains all elements of the form u+w where
u ∈U and w ∈W.
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The following result is interesting by itself, disregarding any implications on factor-
izations of abelian groups. Namely, it provides a condition under which the sum of two
multisets of integers, where one of them has prime size p, is uniformly distributed among
the residue classes modulo p.

Lemma 3.1. Let U and W be two multisets of positive integers. Let |U |= p and |W |= n,
where p is a prime number and gcd(p,n) = 1. Then, the multiset U +W contains exactly
n numbers from each class modulo p if and only if U is a complete residue system modulo
p.

Proof. Let us suppose that U +W contains n elements from each residue class modulo
p. Let ci, bi represents the number of elements from U , W that are congruent to i modulo
p respectively, where 1≤ i≤ p. Note that

p

∑
i=1

ci = p and
p

∑
i=1

bi = n.

Consider the multiset U +W . Let mi denotes the number of elements of U +W that are
congruent to i modulo p. Clearly,

m1 = b1cp + b2cp−1 + . . . + bpc1
m2 = b1c1 + b2cp + . . . + bpc2

...
...

...
...

mp = b1cp−1 + b2cp−2 + . . . + bpcp.

If m1 = m2 = · · ·= mp = n then the previous system can be written in the matrix form
cp cp−1 . . . c1
c1 cp . . . c2
...

...
...

...
cp−1 cp−2 . . . cp




b1
b2
...

bp

=


n
n
...
n


If C = circ(cp,cp−1, . . . ,c1), b = (b1,b2, . . . ,bp)

t and d = (n,n, . . . ,n)t , then the previous
system is

Cb = d.

Let us suppose that det(C) 6= 0. Then, the system has a unique solution, given by

b1 = b2 = · · ·= bp =
n
p
.

Since bi are positive integers and gcd(p,n) = 1, this case is not possible. Therefore, it
must be that det(C) = 0. According to Theorem 3.1, it holds

c1 = c2 = · · ·= cp = 1.

Thus, U is a complete system of residue classes modulo p.
Conversely, let us suppose that U is a complete system of residue classes modulo p.

Consider U +w for w ∈W . It follows that U +w is a complete residue system modulo
p as well. Therefore, the multiset U +W contains every residue class modulo p exactly
|W |= n times.
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Although the following result is a very special case of Theorem 1. in [5], the proof
presented here is based on a new method, using circulant matrices and cyclotomic
polynomials.

Lemma 3.2. Let α = [B1, B2] be a factorization of Zpn. Let |B1|= p and |B2|= n, where
p is a prime number such that gcd(p,n) = 1. Then B1 is a complete system of residue
classes modulo p.

Proof. Let m = pn. Since gcd(p,n) = 1, there is the natural isomorphism π between Zm
and the group of ordered pairs

Zp×Zn = {(a,b)| 0≤ a≤ p−1, 0≤ b≤ n−1}

given by
π(x) = (x mod p, x mod n).

Therefore, α is a factorization of Zm if and only if β = [π(B1), π(B2)] is a factorization
of Zp×Zn. Note that there are exactly n pairs from Zp×Zn that have a particular a
on the first coordinate, and there are exactly p pairs having a particular b on the second
coordinate.
Let U , W be a multiset of the first coordinates of the set π(B1), π(B2) respectively. Note
that elements in U and W are from Zp, where |U |= p and |W |= n. Consider the multiset
U +W . If β is a factorization of Zp×Zn, then U +W must contain every residue class
modulo p exactly n times.

According to Lemma 3.1, U must contain all residue classes modulo p. Therefore, B1
is a complete system of residue classes modulo p.

Corollary 3.1. Let α = [B1, B2] be a factorization of Zpq where p and q are two different
prime numbers. Let |B1| = p and |B2| = q. Then B1, B2 are complete residue systems
modulo p, q respectively.

According to the previous corollary, it is clear that every factorization of Zp×Zq
must be of the form α = [B1,B2] where B1 = {(a, f (a))| 0 ≤ a ≤ p− 1} and B2 =
{(g(b),b)| 0 ≤ b ≤ q− 1}. Consequently, using Theorem 2.1 we have the following
result.

Corollary 3.2. α = [B1, B2] is a factorization of Zp×Zq if and only if

B1 = {(a, f (a))| 0≤ a≤ p−1}, B2 = {(g(b),b)| 0≤ b≤ q−1},

p and q different primes and ( f , g) is a pair of free mappings.

Clearly, every factorization can be normalized, simply by a translation by an appro-
priate element. According to the previous corollary and Rédei’s theorem, one block of a
normalized factorization of Zp×Zq, say B1 must be of the form B1 = {(a,0))| 0≤ a≤
p−1}. This means that f (a) = 0 for every a ∈ Zp. Further, this implies that g could be
any mapping from Zq to Zp, since a pair ( f ,g) is always free if one of the the two func-
tions is the zero mapping. We consider two factorizations α = [B1,B2] and α ′ = [B′1,B

′
2]
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of Zp×Zq to be equal if {B1,B2}= {B′1,B′2}. From here, it follows easily that the total
number of normalized factorizations of Zp×Zq is equal to pq−1 +qp−1−1.

Example 3.2. Consider the mappings f : Z3→ Z4, g : Z4→ Z3, defined as

f =
(

0 1 2
0 2 0

)
g =

(
0 1 2 3
0 1 0 1

)
.

It is not hard to see that a pair ( f ,g) is free. Therefore, it is possible to factorize Z3×Z4
in the way shown in Theorem 2.1. Thus, we obtain α = [B1,B2], a factorization of Z12,
where B1 = {0,8,10}, B2 = {0,1,6,7}.

The following theorem explains that under certain conditions, we always have a strong
clip of ( f ,g), where f : Zp→ Zq, g : Zq→ Zp.

Theorem 3.2. Let f : Zp → Zq and g : Zq → Zp be mappings such that |Im( f )| > 1,
|Im(g)| > 1, f (0) = 0, g(0) = 0. Then a pair of mappings ( f ,g) is chained whenever p
and q are different primes.

Proof. Let us suppose that a pair ( f , g) is free. By Theorem 2.1, α = [B1,B2] is a
factorization of Zp×Zq where

B1 = {(a, f (a))| 0≤ a≤ p−1}, B2 = {(g(b),b)| 0≤ b≤ q−1}.

Since f (0) = 0 and g(0) = 0, it is a normalized factorization. By Rédei’s theorem, either
B1 or B2 is a group. Therefore, either f (a) = 0, a ∈ Zp or g(b) = 0, b ∈ Zq. However,
this contradicts the assumption that |Im( f )| > 1, |Im(g)| > 1. Therefore, ( f ,g) must be
chained.

The previous theorem says that under the conditions stated above, there always exist
numbers i1, i2 ∈ Zp and j1, j2 ∈ Zq, i1 6= i2, j1 6= j2 such that

f (i1)− f (i2)≡ j1− j2 (mod q)

g( j1)− f ( j2)≡ i1− i2 (mod p)

when p and q are different primes. In other words, it says that every two mappings
f : Zp→ Zq and g : Zq→ Zp are chained, unless one of them is a constant mapping.

Note that the previous claim is equivalent to Rédei’s theorem for the case Zp×Zq.
Thus, it might be potentially interesting alternative way of proving Rédei’s theorem. The
following example shows that the assumption for p and q to be different primes can not
be dropped.

Example 3.3. Consider mappings f : Z3→ Z3, g : Z3→ Z3, defined as

f =
(

0 1 2
0 1 2

)
g =

(
0 1 2
0 2 1

)
.

As we see, | Im( f )|> 1, | Im(g)|> 1, f (0) = 0, g(0) = 0. However, ( f ,g) is not chained.
Therefore, ( f , g) is free and α = [B1,B2] is a factorization of Z3×Z3, where

B1 = {(0,0),(1,1),(2,2)}, B2 = {(0,0),(1,2),(2,1)}.
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4. SUMMARY

In this paper, a novel approach, based on circulant matrices, for studying group fac-
torizations has been shown. We believe that there is a significant potential of circulant
matrices for further research. Also, we underlined an interesting number theoretic result
that is equivalent to Rédei’s theorem for the special case of the group Zp×Zq. Thus,
there might be an interesting alternative approach for proving Rédei’s theorem in that
special case Zp×Zq.
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