Coprime (r,k)-Residue Sets In \mathbb{Z}_n

Vladimir Božović

Department of Science and Mathematics, University of Montenegro

Abstract. In this paper we deal with simple problem: How many elements, from the cyclic additive group \mathbb{Z}_n of residues modulo n, are there such that $x \equiv r \pmod{k}$, where gcd(r,k) = gcd(x,n) = 1, where k is a divisor of n. The interest for this question arises from the problem of understanding the action of the automorphism group $\mathscr{I}(n)$ of \mathbb{Z}_n on the set of k-sets of \mathbb{Z}_n in the natural way [7]

$$(x,t) \to tx \ (t \in \mathscr{I}(n), x \in \mathbb{Z}_n).$$

Considering the aforementioned problem we introduced the notion of coprime (r,k)-residue sets in \mathbb{Z}_n , which appear to have an important role in finding number of orbits of the action of automorphism group $\mathscr{I}(n)$ on the set \mathscr{O}_k , that denotes the set of all subsets of \mathbb{Z}_n of size k. We give the elementary analysis of coprime (r,k)-residue sets in the algebraic and number theoretical sense.

1. INTRODUCTION

Let $\mathscr{I}(n)$ be the automorphism group of cyclic additive group \mathbb{Z}_n . It is well known fact that the automorphism group of cyclic additive group is isomorphic to the unit group

$$\mathbb{Z}_n^* = \{t \mid 1 \le t \le n, \ \gcd(t, n) = 1\},\$$

with respect to the multiplication modulo *n*, [3]. We consider the action of the group $\mathscr{I}(n)$ on the set of elements of \mathbb{Z}_n , given by

$$(x,t) \to tx \ (t \in \mathscr{I}(n), x \in \mathbb{Z}_n).$$

There is a natural way to induce this action on the set \mathcal{O}_k , that denotes the set of all subsets of \mathbb{Z}_n of size k. In order to answer to some of the standard enumerative questions regarding this action, as a number of orbits, the cycle index ([2], [5], [6], [4]) of $\mathscr{I}(n)$ acting on \mathbb{Z}_n has to be determined. Also, one might be interested in finding the stabilizer of a k-set $A \subseteq \mathbb{Z}_n$, since when a stabilizer is found, there is a straightforward way to determine the orbit that a set A belongs to. It turns out that the very important role in, for example, finding stablizer of a set A, play so called coprime (r,k)-residue sets [1]. Here, we give some algebraic description of those sets and deal with the problem of finding their cardinality.

Scripta Scientiarum Naturalium

2. THE NOTION OF COPRIME (R, K)-RESIDUE SET IN \mathbb{Z}_N

In this section, we introduce the notion of a coprime (r,k)-residue set in \mathbb{Z}_n and give their analysis from the algebraic and number theoretical point of view. Here, by *natural* number we assume positive integer.

Definition 2.1. Let r,k be natural numbers such that gcd(r,k) = 1, r < k and let k be a divisor of natural number n. A set of integers

$$\mathscr{I}_k^r(n) = \{ x \in \mathscr{I}(n) \mid x \equiv r \pmod{k} \}$$

is called coprime (r,k)-residue set in \mathbb{Z}_n .

Firstly, we prove that any coprime (r, k)-residue set in \mathbb{Z}_n is not empty.

Lemma 2.1. Let r,k,ℓ,n be natural numbers such that gcd(r,k) = 1, r < k and $n = k\ell$. Then coprime (r,k)-residue set $\mathscr{I}_k^r(n)$ is nonempty.

Proof. We prove for given r, k and n and gcd(r, k) = 1, there exists t such that

$$gcd(r+kt,n) = 1$$

Let $p_i^{v_i}$ be a general prime power divisor of *n*. Then, there exists t_i such that

$$gcd(r+kt_i, p_i^{v_i}) = 1$$

Namely, if $p_i \mid k$, then $p_i \nmid r$ and $t_i = 0$ suffices. If $p_i \nmid k$, than any number t_i such that

$$t_i \not\equiv -r/k \pmod{p_i}$$

will work. By Chinese Reminder Theorem, there exists t such that

$$t \equiv t_i \pmod{p_i}$$

and gcd(r+kt,n) = 1. We need to prove that there exists $x \in \mathscr{I}(n)$ such that $x \equiv r \pmod{k}$. Let $x \equiv r+kt \pmod{n}$. Since $k \mid n$ then $x \equiv r \pmod{k}$. Also, it is easy to see that gcd(x,n) = 1 and therefore $x \in \mathscr{I}(n)$.

Lemma 2.2. Let r, k, ℓ be natural numbers such that gcd(r,k) = 1 and r < k. It follows that

$$|\mathscr{I}_k^r(k\ell)| = |\mathscr{I}_k^1(k\ell)|.$$

Proof. According to Lemma 2.1, both sets $\mathscr{I}_k^r(k\ell)$ and $\mathscr{I}_k^1(k\ell)$ are nonempty. Let $x \in \mathscr{I}_k^r(k\ell)$. It follows that $x^{-1}\mathscr{I}_k^r(k\ell) \subseteq \mathscr{I}_k^1(k\ell)$. Hence, we have

 $|x^{-1}\mathcal{I}_{k}^{r}(k\ell)| = |\mathcal{I}_{k}^{r}(k\ell)|$ $|\mathcal{I}_{k}^{r}(k\ell)| \le |\mathcal{I}_{k}^{1}(k\ell)|$ (2.1)

and therefore

Similarly, $x\mathscr{I}_k^1(k\ell) \subseteq \mathscr{I}_k^r(k\ell)$ implies

$$|\mathscr{I}_k^1(k\ell)| \le |\mathscr{I}_k^r(k\ell)|. \tag{2.2}$$

From inequalities 2.1 and 2.2, it follows that

$$|\mathscr{I}_k^1(k\ell)| = |\mathscr{I}_k^r(k\ell)|$$

Lemma 2.3. Let k, ℓ be natural numbers and k > 1. Then $\mathscr{I}_k^1(k\ell)$ is a subgroup of $\mathscr{I}(k\ell)$.

Proof. According to the definition of $\mathscr{I}_k^1(k\ell)$, it is clear that $\mathscr{I}_u^1(k\ell) \subseteq \mathscr{I}(k\ell)$. Apparently the identity, 1, is in $\mathscr{I}_k^1(k\ell)$. For any $x, y \in \mathscr{I}_u^1(k\ell)$, it holds $xy^{-1} \equiv 1 \pmod{k}$, i.e. $xy^{-1} \in \mathscr{I}_k^1(k\ell)$ that concludes the proof.

Lemma 2.4. Let k and ℓ be relatively prime natural numbers and k > 1. Then, it holds

$$\mathscr{I}_k^1(k\ell) \cong \mathscr{I}(\ell).$$

Proof. Let \mathscr{A} be a mapping from $\mathscr{I}_k^1(k\ell)$ to $\mathscr{I}(\ell)$ defined by

$$\mathscr{A}(x) = x \mod \ell$$

First, we show that $Im(\mathscr{A}) \subseteq \mathscr{I}(\ell)$. Let $x \in \mathscr{I}_k^1(k\ell)$. Then, $x = a\ell + b, \ 0 \le b \le \ell$. Since $x \in \mathscr{I}_k^1(k\ell)$, then by the definition of that set, it follows that $x \in \mathscr{I}(k\ell)$. Therefore $gcd(x,\ell) = 1$ and consequently $gcd(b,\ell) = 1$. Thus, $b \in \mathscr{I}(\ell)$, so we have $\mathscr{A}(x) \in \mathscr{I}(\ell)$.

 \mathscr{A} is evidently homomorphism, according to properties of modulo operation. \mathscr{A} is one to one. Let $x, y \in \mathscr{I}_k^1(k\ell)$ and $\mathscr{A}(x) = \mathscr{A}(y)$. From the definition of $\mathscr{I}_k^1(k\ell)$, we have $x \equiv 1 \pmod{k}$ and $y \equiv 1 \pmod{k}$, so $x \equiv y \pmod{k}$. From $\mathscr{A}(x) = \mathscr{A}(y)$ it follows $x \equiv y \pmod{\ell}$. Since *k* and ℓ are relatively prime numbers, then $x \equiv y \pmod{k\ell}$, so \mathscr{A} is one to one.

 \mathscr{A} is onto. Let $z \in \mathscr{I}(\ell)$. We have to find $x \in \mathscr{I}_k^1(k\ell)$ such that $\mathscr{A}(x) = \ell$, or in other words $x \equiv z \pmod{\ell}$. That x must be of the form 1 + kt, so we should find such a t for which it holds $x \equiv z \pmod{\ell}$. From $gcd(k,\ell) = 1$, there exist $m, n \in \mathbb{Z}$ such that $mk + n\ell = 1$. Let us define t = (z-1)m, i.e. x = 1 + (z-1)mk. Clearly, $x \equiv 1 \pmod{k}$. Note that $x = 1 + (z-1)(1 - n\ell)$, that is $x = z + n\ell(1-z)$, so $x \equiv z \pmod{\ell}$. Now, we need to prove that $gcd(x,\ell) = 1$. Let p be a prime divisor of x and l. Then, p divides z, from which we would have that $p \mid gcd(z,\ell)$ what is impossible since $z \in \mathscr{I}(\ell)$. Therefore, $gcd(x,k\ell) = 1$. At the end, we need to provide that $x < k\ell$. If x = 1 + (z-1)mkis not less than $k\ell$ then we should take $x = 1 + (z-1)mk \pmod{k\ell}$ and all previously given arguments hold.

Corollary 2.1. Let r,k,ℓ be natural numbers such that r < k, $gcd(k,\ell) = 1$ and gcd(r,k) = 1. Then, it holds

$$|\mathscr{I}_k^r(k\ell)| = \phi(\ell).$$

Proof. It follows directly from Lemma 2.2 and Lemma 2.4.

Our goal is to find the cardinality of the set $\mathscr{I}_k^r(k\ell)$ when k and ℓ are not necessarily relatively prime numbers and when gcd(r,k) = 1. As we sow in the proof of Lemma 2.1 it holds $gcd(x,k\ell) = 1 \Leftrightarrow gcd(x,k\ell') = 1$ where ℓ' is the largest divisor of ℓ that is relatively prime to k. This gives us idea for the following lemma.

Lemma 2.5. Let k, ℓ be natural numbers and k > 1. It follows that

$$|\mathscr{I}_k^1(k\ell)| = \phi(\ell')\frac{\ell}{\ell'}$$

where ℓ' is the largest divisor of ℓ that is relatively prime to ℓ .

Proof. According to Lemma 2.3 $\mathscr{I}_k^1(k\ell)$ is a subgroup of $\mathscr{I}(k\ell)$. Let us define a homomorphism \mathscr{S} from $\mathscr{I}_k^1(k\ell)$ to $\mathscr{I}_k^1(k\ell')$ in the following way

$$\mathscr{S}(x) = x \mod k\ell'$$

This is evidently epimorphism and $Ker(\mathscr{S}) = \{1 + tk\ell' \mid 0 \le t < \frac{\ell}{\ell'}\}$. Therefore, we have that

$$|\mathscr{I}_k^1(k\ell)| = |\mathscr{I}_k^1(k\ell')| rac{\ell}{\ell'}$$

By Corollary 2.1 it follows that $|\mathscr{I}_k^1(k\ell')| = \phi(\ell')$ and this concludes the proof.

Lemma 2.6. Let k, ℓ be natural numbers and k > 1. Then it follows that

$$|\mathscr{I}_k^1(k\ell)| = \frac{\phi(k\ell)}{\phi(k)}.$$

Proof. By Lemma 2.5 it holds that

$$\phi(\ell') = \frac{\ell'|\mathscr{I}_k^1(k\ell)|}{\ell}$$

where ℓ' is the largest divisor of ℓ that is relatively prime to k. Let $\ell = \ell' \ell''$. Clearly, $\ell'' \mid k$. Then $gcd(k\ell'', \ell') = 1$ and therefore $\phi(k\ell) = \phi(k\ell'')\phi(\ell')$. Since $\ell'' \mid k$ then

$$\phi(k\ell'') = k\ell'' \prod_{p|k} (1 - \frac{1}{p}) = \ell''\phi(k)$$

Therefore,

$$\phi(k\ell'')\phi(\ell') = \ell''\phi(k)\frac{\ell'|\mathscr{I}_k^1(k\ell)|}{\ell}$$

what implies

$$\phi(k\ell) = \frac{\phi(k)}{|\mathscr{I}_k^1(k\ell)|}$$

and

$$|\mathscr{I}_k^1(k\ell)| = \frac{\phi(k\ell)}{\phi(k)}$$

Corollary 2.2. Let k, ℓ, r be natural numbers such that gcd(r,k) = 1 and r < k. Then,

$$|\mathscr{I}_k^r(k\ell)| = \frac{\phi(k\ell)}{\phi(k)}.$$

Proof. It follows directly from Lemma 2.2 and Lemma 2.6.

REFERENCES

- 1. Vladimir Božović. Factorization of finite groups. VDM Verlag Dr. Müller, Saarbrücken, 2009.
- N.G. De Bruijn. A survey of generalizations of pt'olyaŠs enumeration theorem. *Nieuw Archief voor Wiskunde*, 19:89–112, 1971.
- 3. D.S. Dummit and Foote. Abstract Algebra. Prentice-Hall, Upper Saddle River, NJ, 1999.
- 4. Harald Fripertinger. Cycle indices of linear, affine and projective groups. *Linear Algebra Appl.*, 263:133–156, 1997.
- 5. M.A. Harrison and R.G. High. On the cycle index of a product of permutation groups. *Journal of Combinatorial Theory*, (4):277–299, 1968.
- 6. Wan-Di Wei and Ju-Yong Xu. Cycle index of direct product of permutation groups and number of equivalence classes of subsets of z_{ν} . *Discrete Mathematics*, 123:179–188, 1993.
- 7. Hans J. Zassenhaus. The Theory of Groups. Dover, 1958.