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Abstract. In this paper we deal with simple problem: How many elements, from the cyclic additive
group Zn of residues modulo n, are there such that x≡ r (mod k), where gcd(r,k) = gcd(x,n) = 1,
where k is a divisor of n. The interest for this question arises from the problem of understanding the
action of the automorphism group I (n) of Zn on the set of k−sets of Zn in the natural way [7]

(x, t)→ tx (t ∈I (n), x ∈ Zn).

Considering the aforementioned problem we introduced the notion of coprime (r,k)−residue sets in
Zn, which appear to have an important role in finding number of orbits of the action of automorphism
group I (n) on the set Ok, that denotes the set of all subsets of Zn of size k. We give the elementary
analysis of coprime (r,k)-residue sets in the algebraic and number theoretical sense.

1. INTRODUCTION

Let I (n) be the automorphism group of cyclic additive group Zn. It is well known fact
that the automorphism group of cyclic additive group is isomorphic to the unit group

Z∗n = {t | 1≤ t ≤ n, gcd(t,n) = 1},

with respect to the multiplication modulo n, [3]. We consider the action of the group
I (n) on the set of elements of Zn, given by

(x, t)→ tx (t ∈I (n), x ∈ Zn).

There is a natural way to induce this action on the set Ok, that denotes the set of all
subsets of Zn of size k. In order to answer to some of the standard enumerative questions
regarding this action, as a number of orbits, the cycle index ([2], [5], [6], [4]) of I (n)
acting on Zn has to be determined. Also, one might be interested in finding the stabilizer
of a k−set A ⊆ Zn, since when a stabilizer is found, there is a straightforward way to
determine the orbit that a set A belongs to. It turns out that the very important role in, for
example, finding stablizer of a set A, play so called coprime (r,k)−residue sets [1]. Here,
we give some algebraic description of those sets and deal with the problem of finding
their cardinality.
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2. THE NOTION OF COPRIME (R,K)−RESIDUE SET IN ZN

In this section, we introduce the notion of a coprime (r,k)−residue set in Zn and give
their analysis from the algebraic and number theoretical point of view. Here, by natural
number we assume positive integer.

Definition 2.1. Let r,k be natural numbers such that gcd(r,k) = 1, r < k and let k be a
divisor of natural number n. A set of integers

I r
k (n) = {x ∈I (n)| x≡ r (mod k)}

is called coprime (r,k)−residue set in Zn.

Firstly, we prove that any coprime (r,k)−residue set in Zn is not empty.

Lemma 2.1. Let r,k, `,n be natural numbers such that gcd(r,k) = 1, r < k and n = k`.
Then coprime (r,k)−residue set I r

k (n) is nonempty.

Proof. We prove for given r,k and n and gcd(r,k) = 1, there exists t such that

gcd(r+ kt,n) = 1

Let pvi
i be a general prime power divisor of n. Then, there exists ti such that

gcd(r+ kti, pvi
i ) = 1

Namely, if pi | k, then pi - r and ti = 0 suffices. If pi - k, than any number ti such that

ti 6≡ −r/k (mod pi)

will work. By Chinese Reminder Theorem, there exists t such that

t ≡ ti (mod pi)

and gcd(r + kt,n) = 1. We need to prove that there exists x ∈ I (n) such that x ≡
r (mod k). Let x ≡ r + kt (mod n). Since k | n then x ≡ r (mod k). Also, it is easy
to see that gcd(x,n) = 1 and therefore x ∈I (n).

Lemma 2.2. Let r,k, ` be natural numbers such that gcd(r,k) = 1 and r < k. It follows
that

|I r
k (k`)|= |I 1

k (k`)|.

Proof. According to Lemma 2.1, both sets I r
k (k`) and I 1

k (k`) are nonempty.
Let x ∈I r

k (k`). It follows that x−1I r
k (k`)⊆I 1

k (k`). Hence, we have

|x−1I r
k (k`)|= |I r

k (k`)|

and therefore
|I r

k (k`)| ≤ |I 1
k (k`)| (2.1)
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Similarly, xI 1
k (k`)⊆I r

k (k`) implies

|I 1
k (k`)| ≤ |I r

k (k`)|. (2.2)

From inequalities 2.1 and 2.2, it follows that

|I 1
k (k`)|= |I r

k (k`)|

Lemma 2.3. Let k, ` be natural numbers and k > 1. Then I 1
k (k`) is a subgroup of

I (k`).

Proof. According to the definition of I 1
k (k`), it is clear that I 1

u (k`) ⊆ I (k`). Appar-
ently the identity, 1, is in I 1

k (k`). For any x,y ∈I 1
u (k`), it holds xy−1 ≡ 1 (mod k), i.e.

xy−1 ∈I 1
k (k`) that concludes the proof.

Lemma 2.4. Let k and ` be relatively prime natural numbers and k > 1. Then, it holds

I 1
k (k`)∼= I (`).

Proof. Let A be a mapping from I 1
k (k`) to I (`) defined by

A (x) = x mod `

First, we show that Im(A )⊆I (`). Let x ∈I 1
k (k`). Then,

x = a`+b, 0≤ b≤ `. Since x∈I 1
k (k`), then by the definition of that set, it follows that

x ∈I (k`). Therefore gcd(x, `) = 1 and consequently gcd(b, `) = 1. Thus, b ∈I (`), so
we have A (x) ∈I (`).

A is evidently homomorphism, according to properties of modulo operation.
A is one to one. Let x,y ∈I 1

k (k`) and A (x) = A (y). From the definition of I 1
k (k`),

we have x ≡ 1 (mod k) and y ≡ 1 (mod k), so x ≡ y (mod k). From A (x) = A (y) it
follows x≡ y (mod `). Since k and ` are relatively prime numbers, then x≡ y (mod k`),
so A is one to one.

A is onto. Let z ∈ I (`). We have to find x ∈ I 1
k (k`) such that A (x) = `, or in other

words x ≡ z (mod `) . That x must be of the form 1+ kt, so we should find such a t
for which it holds x ≡ z (mod `). From gcd(k, `) = 1, there exist m,n ∈ Z such that
mk+n` = 1. Let us define t = (z−1)m, i.e. x = 1+(z−1)mk. Clearly, x ≡ 1 (mod k).
Note that x = 1+(z−1)(1−n`), that is x = z+n`(1− z), so x ≡ z (mod `). Now, we
need to prove that gcd(x, `) = 1. Let p be a prime divisor of x and l. Then, p divides
z, from which we would have that p | gcd(z, `) what is impossible since z ∈ I (`).
Therefore, gcd(x,k`) = 1. At the end, we need to provide that x< k`. If x= 1+(z−1)mk
is not less than k` then we should take x = 1+(z− 1)mk (mod k`) and all previously
given arguments hold.

Corollary 2.1. Let r,k, ` be natural numbers such that r < k, gcd(k, `) = 1 and
gcd(r,k) = 1. Then, it holds

|I r
k (k`)|= φ(`).
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Proof. It follows directly from Lemma 2.2 and Lemma 2.4.

Our goal is to find the cardinality of the set I r
k (k`) when k and ` are not necessarily

relatively prime numbers and when gcd(r,k) = 1. As we sow in the proof of Lemma
2.1 it holds gcd(x,k`) = 1⇔ gcd(x,k`′) = 1 where `′ is the largest divisor of ` that is
relatively prime to k. This gives us idea for the following lemma.

Lemma 2.5. Let k, ` be natural numbers and k > 1. It follows that

|I 1
k (k`)|= φ(`′)

`

`′

where `′ is the largest divisor of ` that is relatively prime to `.

Proof. According to Lemma 2.3 I 1
k (k`) is a subgroup of I (k`). Let us define a

homomorphism S from I 1
k (k`) to I 1

k (k`
′) in the following way

S (x) = x mod k`′

This is evidently epimorphism and Ker(S ) = {1+tk`′ | 0≤ t < `
`′}. Therefore, we have

that
|I 1

k (k`)|= |I 1
k (k`

′)| `
`′

By Corollary 2.1 it follows that |I 1
k (k`

′)|= φ(`′) and this concludes the proof.

Lemma 2.6. Let k, ` be natural numbers and k > 1. Then it follows that

|I 1
k (k`)|=

φ(k`)
φ(k)

.

Proof. By Lemma 2.5 it holds that

φ(`′) =
`′|I 1

k (k`)|
`

where `′ is the largest divisor of ` that is relatively prime to k. Let `= `′`′′. Clearly, `′′ | k.
Then gcd(k`′′, `′) = 1 and therefore φ(k`) = φ(k`′′)φ(`′). Since `′′ | k then

φ(k`′′) = k`′′∏
p|k

(1− 1
p
) = `′′φ(k)

Therefore,

φ(k`′′)φ(`′) = `′′φ(k)
`′|I 1

k (k`)|
`

what implies

φ(k`) =
φ(k)
|I 1

k (k`)|
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and

|I 1
k (k`)|=

φ(k`)
φ(k)

Corollary 2.2. Let k, `,r be natural numbers such that gcd(r,k) = 1 and r < k. Then,

|I r
k (k`)|=

φ(k`)
φ(k)

.

Proof. It follows directly from Lemma 2.2 and Lemma 2.6.
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