Coprime (r, k)-Residue Sets $\operatorname{In} \mathbb{Z}_{n}$

Vladimir Božović
Department of Science and Mathematics, University of Montenegro

Abstract

In this paper we deal with simple problem: How many elements, from the cyclic additive group \mathbb{Z}_{n} of residues modulo n, are there such that $x \equiv r(\bmod k)$, where $\operatorname{gcd}(r, k)=\operatorname{gcd}(x, n)=1$, where k is a divisor of n. The interest for this question arises from the problem of understanding the action of the automorphism group $\mathscr{I}(n)$ of \mathbb{Z}_{n} on the set of k-sets of \mathbb{Z}_{n} in the natural way [7]

$$
(x, t) \rightarrow t x\left(t \in \mathscr{I}(n), x \in \mathbb{Z}_{n}\right)
$$

Considering the aforementioned problem we introduced the notion of coprime (r, k)-residue sets in \mathbb{Z}_{n}, which appear to have an important role in finding number of orbits of the action of automorphism group $\mathscr{I}(n)$ on the set \mathscr{O}_{k}, that denotes the set of all subsets of \mathbb{Z}_{n} of size k. We give the elementary analysis of coprime (r, k)-residue sets in the algebraic and number theoretical sense.

1. INTRODUCTION

Let $\mathscr{I}(n)$ be the automorphism group of cyclic additive group \mathbb{Z}_{n}. It is well known fact that the automorphism group of cyclic additive group is isomorphic to the unit group

$$
\mathbb{Z}_{n}^{*}=\{t \mid 1 \leq t \leq n, \operatorname{gcd}(t, n)=1\},
$$

with respect to the multiplication modulo n, [3]. We consider the action of the group $\mathscr{I}(n)$ on the set of elements of \mathbb{Z}_{n}, given by

$$
(x, t) \rightarrow t x\left(t \in \mathscr{I}(n), x \in \mathbb{Z}_{n}\right) .
$$

There is a natural way to induce this action on the set \mathscr{O}_{k}, that denotes the set of all subsets of \mathbb{Z}_{n} of size k. In order to answer to some of the standard enumerative questions regarding this action, as a number of orbits, the cycle index ([2], [5], [6], [4]) of $\mathscr{I}(n)$ acting on \mathbb{Z}_{n} has to be determined. Also, one might be interested in finding the stabilizer of a k-set $A \subseteq \mathbb{Z}_{n}$, since when a stabilizer is found, there is a straightforward way to determine the orbit that a set A belongs to. It turns out that the very important role in, for example, finding stablizer of a set A, play so called coprime (r, k)-residue sets [1]. Here, we give some algebraic description of those sets and deal with the problem of finding their cardinality.

2. THE NOTION OF COPRIME (R, K)-RESIDUE SET IN \mathbb{Z}_{N}

In this section, we introduce the notion of a coprime (r, k)-residue set in \mathbb{Z}_{n} and give their analysis from the algebraic and number theoretical point of view. Here, by natural number we assume positive integer.

Definition 2.1. Let r, k be natural numbers such that $\operatorname{gcd}(r, k)=1, r<k$ and let k be a divisor of natural number n. A set of integers

$$
\mathscr{I}_{k}^{r}(n)=\{x \in \mathscr{I}(n) \mid x \equiv r(\bmod k)\}
$$

is called coprime (r, k)-residue set in \mathbb{Z}_{n}.
Firstly, we prove that any coprime (r, k)-residue set in \mathbb{Z}_{n} is not empty.
Lemma 2.1. Let r, k, ℓ, n be natural numbers such that $\operatorname{gcd}(r, k)=1, r<k$ and $n=k \ell$. Then coprime (r, k)-residue set $\mathscr{I}_{k}^{r}(n)$ is nonempty.
Proof. We prove for given r, k and n and $\operatorname{gcd}(r, k)=1$, there exists t such that

$$
\operatorname{gcd}(r+k t, n)=1
$$

Let $p_{i}^{v_{i}}$ be a general prime power divisor of n. Then, there exists t_{i} such that

$$
\operatorname{gcd}\left(r+k t_{i}, p_{i}^{v_{i}}\right)=1
$$

Namely, if $p_{i} \mid k$, then $p_{i} \nmid r$ and $t_{i}=0$ suffices. If $p_{i} \nmid k$, than any number t_{i} such that

$$
t_{i} \not \equiv-r / k \quad\left(\bmod p_{i}\right)
$$

will work. By Chinese Reminder Theorem, there exists t such that

$$
t \equiv t_{i} \quad\left(\bmod p_{i}\right)
$$

and $\operatorname{gcd}(r+k t, n)=1$. We need to prove that there exists $x \in \mathscr{I}(n)$ such that $x \equiv$ $r(\bmod k)$. Let $x \equiv r+k t(\bmod n)$. Since $k \mid n$ then $x \equiv r(\bmod k)$. Also, it is easy to see that $\operatorname{gcd}(x, n)=1$ and therefore $x \in \mathscr{I}(n)$.

Lemma 2.2. Let r, k, ℓ be natural numbers such that $\operatorname{gcd}(r, k)=1$ and $r<k$. It follows that

$$
\left|\mathscr{I}_{k}^{r}(k \ell)\right|=\left|\mathscr{I}_{k}^{1}(k \ell)\right| .
$$

Proof. According to Lemma 2.1, both sets $\mathscr{I}_{k}^{r}(k \ell)$ and $\mathscr{I}_{k}^{1}(k \ell)$ are nonempty. Let $x \in \mathscr{I}_{k}^{r}(k \ell)$. It follows that $x^{-1} \mathscr{I}_{k}^{r}(k \ell) \subseteq \mathscr{I}_{k}^{1}(k \ell)$. Hence, we have

$$
\left|x^{-1} \mathscr{I}_{k}^{r}(k \ell)\right|=\left|\mathscr{I}_{k}^{r}(k \ell)\right|
$$

and therefore

$$
\begin{equation*}
\left|\mathscr{I}_{k}^{r}(k \ell)\right| \leq\left|\mathscr{I}_{k}^{1}(k \ell)\right| \tag{2.1}
\end{equation*}
$$

Similarly, $x \mathscr{I}_{k}^{1}(k \ell) \subseteq \mathscr{I}_{k}^{r}(k \ell)$ implies

$$
\begin{equation*}
\left|\mathscr{I}_{k}^{1}(k \ell)\right| \leq\left|\mathscr{I}_{k}^{r}(k \ell)\right| . \tag{2.2}
\end{equation*}
$$

From inequalities 2.1 and 2.2, it follows that

$$
\left|\mathscr{I}_{k}^{1}(k \ell)\right|=\left|\mathscr{I}_{k}^{r}(k \ell)\right|
$$

Lemma 2.3. Let k, ℓ be natural numbers and $k>1$. Then $\mathscr{I}_{k}^{1}(k \ell)$ is a subgroup of $\mathscr{I}(k \ell)$.
Proof. According to the definition of $\mathscr{I}_{k}^{1}(k \ell)$, it is clear that $\mathscr{I}_{u}^{1}(k \ell) \subseteq \mathscr{I}(k \ell)$. Apparently the identity, 1 , is in $\mathscr{I}_{k}^{1}(k \ell)$. For any $x, y \in \mathscr{I}_{u}^{1}(k \ell)$, it holds $x y^{-1} \equiv 1(\bmod k)$, i.e. $x y^{-1} \in \mathscr{I}_{k}^{1}(k \ell)$ that concludes the proof.

Lemma 2.4. Let k and ℓ be relatively prime natural numbers and $k>1$. Then, it holds

$$
\mathscr{I}_{k}^{1}(k \ell) \cong \mathscr{I}(\ell) .
$$

Proof. Let \mathscr{A} be a mapping from $\mathscr{I}_{k}^{1}(k \ell)$ to $\mathscr{I}(\ell)$ defined by

$$
\mathscr{A}(x)=x \bmod \ell
$$

First, we show that $\operatorname{Im}(\mathscr{A}) \subseteq \mathscr{I}(\ell)$. Let $x \in \mathscr{I}_{k}^{1}(k \ell)$. Then, $x=a \ell+b, 0 \leq b \leq \ell$. Since $x \in \mathscr{I}_{k}^{1}(k \ell)$, then by the definition of that set, it follows that $x \in \mathscr{I}(k \ell)$. Therefore $\operatorname{gcd}(x, \ell)=1$ and consequently $\operatorname{gcd}(b, \ell)=1$. Thus, $b \in \mathscr{I}(\ell)$, so we have $\mathscr{A}(x) \in \mathscr{I}(\ell)$.
\mathscr{A} is evidently homomorphism, according to properties of modulo operation.
\mathscr{A} is one to one. Let $x, y \in \mathscr{I}_{k}^{1}(k \ell)$ and $\mathscr{A}(x)=\mathscr{A}(y)$. From the definition of $\mathscr{I}_{k}^{1}(k \ell)$, we have $x \equiv 1(\bmod k)$ and $y \equiv 1(\bmod k)$, so $x \equiv y(\bmod k)$. From $\mathscr{A}(x)=\mathscr{A}(y)$ it follows $x \equiv y(\bmod \ell)$. Since k and ℓ are relatively prime numbers, then $x \equiv y(\bmod k \ell)$, so \mathscr{A} is one to one.
\mathscr{A} is onto. Let $z \in \mathscr{I}(\ell)$. We have to find $x \in \mathscr{I}_{k}^{1}(k \ell)$ such that $\mathscr{A}(x)=\ell$, or in other words $x \equiv z(\bmod \ell)$. That x must be of the form $1+k t$, so we should find such a t for which it holds $x \equiv z(\bmod \ell)$. From $\operatorname{gcd}(k, \ell)=1$, there exist $m, n \in \mathbb{Z}$ such that $m k+n \ell=1$. Let us define $t=(z-1) m$, i.e. $x=1+(z-1) m k$. Clearly, $x \equiv 1(\bmod k)$. Note that $x=1+(z-1)(1-n \ell)$, that is $x=z+n \ell(1-z)$, so $x \equiv z(\bmod \ell)$. Now, we need to prove that $\operatorname{gcd}(x, \ell)=1$. Let p be a prime divisor of x and l. Then, p divides z, from which we would have that $p \mid \operatorname{gcd}(z, \ell)$ what is impossible since $z \in \mathscr{I}(\ell)$. Therefore, $\operatorname{gcd}(x, k \ell)=1$. At the end, we need to provide that $x<k \ell$. If $x=1+(z-1) m k$ is not less than $k \ell$ then we should take $x=1+(z-1) m k(\bmod k \ell)$ and all previously given arguments hold.

Corollary 2.1. Let r, k, ℓ be natural numbers such that $r<k, \operatorname{gcd}(k, \ell)=1$ and $\operatorname{gcd}(r, k)=1$. Then, it holds

$$
\left|\mathscr{I}_{k}^{r}(k \ell)\right|=\phi(\ell) .
$$

Proof. It follows directly from Lemma 2.2 and Lemma 2.4.
Our goal is to find the cardinality of the set $\mathscr{\mathscr { F }}_{k}^{r}(k \ell)$ when k and ℓ are not necessarily relatively prime numbers and when $\operatorname{gcd}(r, k)=1$. As we sow in the proof of Lemma 2.1 it holds $\operatorname{gcd}(x, k \ell)=1 \Leftrightarrow \operatorname{gcd}\left(x, k \ell^{\prime}\right)=1$ where ℓ^{\prime} is the largest divisor of ℓ that is relatively prime to k. This gives us idea for the following lemma.

Lemma 2.5. Let k, ℓ be natural numbers and $k>1$. It follows that

$$
\left|\mathscr{I}_{k}^{1}(k \ell)\right|=\phi\left(\ell^{\prime}\right) \frac{\ell}{\overline{\ell^{\prime}}}
$$

where ℓ^{\prime} is the largest divisor of ℓ that is relatively prime to ℓ.
Proof. According to Lemma $2.3 \mathscr{I}_{k}^{1}(k \ell)$ is a subgroup of $\mathscr{I}(k \ell)$. Let us define a homomorphism \mathscr{S} from $\mathscr{I}_{k}^{1}(k \ell)$ to $\mathscr{I}_{k}^{1}\left(k \ell^{\prime}\right)$ in the following way

$$
\mathscr{S}(x)=x \bmod k \ell^{\prime}
$$

This is evidently epimorphism and $\operatorname{Ker}(\mathscr{S})=\left\{1+t k \ell^{\prime} \left\lvert\, 0 \leq t<\frac{\ell}{\ell^{\prime}}\right.\right\}$. Therefore, we have that

$$
\left|\mathscr{I}_{k}^{1}(k \ell)\right|=\left|\mathscr{I}_{k}^{1}\left(k \ell^{\prime}\right)\right| \frac{\ell}{\ell^{\prime}}
$$

By Corollary 2.1 it follows that $\left|\mathscr{I}_{k}^{1}\left(k \ell^{\prime}\right)\right|=\phi\left(\ell^{\prime}\right)$ and this concludes the proof.
Lemma 2.6. Let k, ℓ be natural numbers and $k>1$. Then it follows that

$$
\left|\mathscr{I}_{k}^{1}(k \ell)\right|=\frac{\phi(k \ell)}{\phi(k)} .
$$

Proof. By Lemma 2.5 it holds that

$$
\phi\left(\ell^{\prime}\right)=\frac{\ell^{\prime}\left|\mathscr{I}_{k}^{1}(k \ell)\right|}{\ell}
$$

where ℓ^{\prime} is the largest divisor of ℓ that is relatively prime to k. Let $\ell=\ell^{\prime} \ell^{\prime \prime}$. Clearly, $\ell^{\prime \prime} \mid k$. Then $\operatorname{gcd}\left(k \ell^{\prime \prime}, \ell^{\prime}\right)=1$ and therefore $\phi(k \ell)=\phi\left(k \ell^{\prime \prime}\right) \phi\left(\ell^{\prime}\right)$. Since $\ell^{\prime \prime} \mid k$ then

$$
\phi\left(k \ell^{\prime \prime}\right)=k \ell^{\prime \prime} \prod_{p \mid k}\left(1-\frac{1}{p}\right)=\ell^{\prime \prime} \phi(k)
$$

Therefore,

$$
\phi\left(k \ell^{\prime \prime}\right) \phi\left(\ell^{\prime}\right)=\ell^{\prime \prime} \phi(k) \frac{\ell^{\prime}\left|\mathscr{J}_{k}^{1}(k \ell)\right|}{\ell}
$$

what implies

$$
\phi(k \ell)=\frac{\phi(k)}{\left|\mathscr{I}_{k}^{1}(k \ell)\right|}
$$

and

$$
\left|\mathscr{I}_{k}^{1}(k \ell)\right|=\frac{\phi(k \ell)}{\phi(k)}
$$

Corollary 2.2. Let k, ℓ, r be natural numbers such that $\operatorname{gcd}(r, k)=1$ and $r<k$. Then,

$$
\left|\mathscr{I}_{k}^{r}(k \ell)\right|=\frac{\phi(k \ell)}{\phi(k)} .
$$

Proof. It follows directly from Lemma 2.2 and Lemma 2.6.

REFERENCES

1. Vladimir Božović. Factorization of finite groups. VDM Verlag Dr. Müller, Saarbrücken, 2009.
2. N.G. De Bruijn. A survey of generalizations of pt'olyaŠs enumeration theorem. Nieuw Archief voor Wiskunde, 19:89-112, 1971.
3. D.S. Dummit and Foote. Abstract Algebra. Prentice-Hall, Upper Saddle River, NJ, 1999.
4. Harald Fripertinger. Cycle indices of linear, affine and projective groups. Linear Algebra Appl., 263:133-156, 1997.
5. M.A. Harrison and R.G. High. On the cycle index of a product of permutation groups. Journal of Combinatorial Theory, (4):277-299, 1968.
6. Wan-Di Wei and Ju-Yong Xu. Cycle index of direct product of permutation groups and number of equivalence classes of subsets of z_{v}. Discrete Mathematics, 123:179-188, 1993.
7. Hans J. Zassenhaus. The Theory of Groups. Dover, 1958.
